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SUMMARY 

Analyses are made for unsteady heat transfer from a circular cylinder immersed in a porous medium through 
which a liquid is flowing according to Darcy's law. Asymptotic solutions for large and small Peclet numbers 
(Pe) are obtained for the case where the unsteady temperature field is produced by a step change in wall 
temperature. The former is valid for Pe > 200 and the latter forPe < 0.1. The series solution for small time, 
which is valid for all values of Pe, is also obtained. By applying the Euler transformation to the series, its 
convergence is greatly improved, and it appears that the Eulerized series determines the mean Nusselt number 
adequately for most values of time. 

1. Introduction 

Heat transfer from a surface immersed in a porous medium through which a liquid is flowing is 

o f  great practical importance in many branches of  engineering. As is well known, the superficial 

velocity (volumetric flow rate per unit cross-section area) is governed by Darcy's law as long as 

the Reynolds number, Reb, based on the averaged grain diameter is smaller than about 10 [1]. 

In the present paper, analytical solutions of  the energy equation are obtained for unsteady heat 

transfer from a circular cylinder immersed in a Darcy flow. In order to simplify the problem, 

the following assumptions are made: (1) Every grain of  the porous medium is so small that we 
can define continuous velocity and temperature fields by taking locally averaged mass flow and 

locally averaged temperature, respectively; (2) All the properties of  the porous medium and the 

fluid are homogeneous and isotropic, so that the locally averaged velocity is given by a potential 

flow solution; (3) The difference in temperature between the fluid and the solid composing the 

porous medium is negligible; (4) The dispersive heat flux resulting from velocity and tempera- 

ture fluctuations in the pore space is negligible compared with the conductive one. 
In many cases of  heat transfer in porous media, especially at low Reynolds number flows, 

the assumption (3) holds [1 ]. The assumption (4) is valid when the Peclet number Pe b based on 
the average grain diameter is smaller than about 3000 [ 1 ]. 

Under the above assumptions, the energy equation for the locally averaged temperature is 

greatly simplified and becomes identical in dimensionless form with the ordinary one for a fluid 

continuum having a velocity distribution given by potential theory. For the steady-state case, 
many authors [2, 3, 4] have obtained analytical solutions of  the energy equation for heat 
transfer from a circular cylinder immersed in a potential flow. These solutions can be used for 
heat transfer in a Darcy flow provided that the above assumptions are satisfied. For the 
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unsteady case, however, only a few. studies have been made on heat transfer in a potential flow. 
Recent contributions on unsteady heat transfer from a circular cylinder have been made by 
Okada et al. [5, 6], who carried out both numerical calculations and experiments for the case 
where the unsteady temperature field is produced by sudden imposition of a constant tempera- 
ture difference between the cylinder and its surroundings. They showed that the agreement in 
temperature distribution between the calculated values and the experimental ones is satisfacto- 
ry. Their investigation is limited to several values of Pe (Peclet number based on the radius of 
the cylinder) between about 1 ~ 50. 

The present paper reconsiders this problem theoretically, giving asymptotic solutions of the 
unsteady energy equation for large and small values of Pe. These solutions are valid for Pe 
200 and Pe < 0.1, respectively. Furthermore, the series solution for small time, which is valid 
for all values of Pe, is also obtained. The convergence of this short-time solution becomes poor 
as time increases. It is, however, shown that if the Euler transformation is applied to the series 
its convergence greatly improves, and it gives satisfactory results for the mean Nusselt number 
for most values of time. 

2. Governing equation 

Consider a Darcy flow around a circular cylinder of radius %. The superficial velocity of the 
flow far upstream is assumed to be uniform (= U). Under the assumptions made in the preced- 
ing section, the energy equation can be written as 

+ (1 - ,),,,c, + ,, cr (u'ar/a,.' + -7 v' ,. a,'/ao ) 

= XcVr ~ t', (1) 

where 

1 V2 = a: /ar,2 + 1 , a/ar' + a~/a0 ~ (2) 

and 

u' = - U(1 - r2o ~/2)cos 0, 

v' = U(1 +r:~o/r'2)sin O. 
(3) 

In the above equations, t' is the locally averaged temperature, r '  the time, (r', 0) polar 
co-ordinates with origin at the center of the cylinder, u' and v' the superficial velocities in r'- 
and 0-direction, respectively, Of and cf the density and specific heat of the fluid, Ps and c s the 
density and specific heat of the solid composing the porous medium, Xc the effective thermal 
conductivity of the saturated porous medium and n the volumetric porosity. We assume that, 
initially, the surface of the cylinder and the surroundings are at the same temperature T**, 
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whereupon at time ~- ' = 0 the surface temperature is suddenly changed to a constant value T w. 
Then, the boundary conditions of the present problem can be written as 

r '  < 0: t' = To., 

r '  > 0: t' = T w at r' = r0, (4) 

/d t 
Too as r ~ oo. 

Defining such dimensionless quantities as 

, p fC f  , 
r = r  /r o, r =  Ur /r o, 

npfc f  + (1 - n)PsC s (5) 

t = ( t ' -  T~) / (Tw - T**), Pe=pfcfUro/Xc,  

(1) and (4) can be written as 

( V a t l a O ) = P e - l V r 2 t ,  (6) ~t/ar + u~t/~r + r 

where ~2 is a dimensionless form of ~2, and 

u = - ( 1 - r  -2)cos0, v = ( l + r  -2)sin0. (7) 

The dimensionless boundary conditions become 

r < 0 :  t = 0 ,  

r > 0 :  t = l  at r = l ,  

t ~ O  as r -~  oo, 

(8) 

respectively. 

3. Solutions for small Pedet numbers  

In this section, we shall obtain asymptotic solutions of (6) for small Peclet numbers. In the 
limit Pe -.  O, the non-steady term ~t/~T should be balanced by the conduction term. In order 
to reflect this balance in the energy equation, we introduce new variables 

= T/Pr, [(~,r,O) = t(r,r,O), (9) 

in terms of which (6) can be written as 

a[/a~ +Pc, uai/Or + - ai/aO =XTr2i. 
r 

(10) 
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The solution of (10) is assumed to be of the form 

t = io(£r,O) + e e l ,  (7:,r,O) +Pe:i2(7:,r,O) + . . .  (11) 

Substituting this into (10), we have 

ato/aT: - ~2 to =o, 

a t , , l a T :  - ~ t .  = - ( u a 6 , _  l lar + £ M,,_ 11ao) r 
f o r n >  1. 

(12) 

Boundary conditions for these equations are 

to(O,r,O) = 0, /o(~,1,0) = 1, ~o(7:,~,0) = 0, 

fn(O,r,O) = [n(~,l ,O) = fn(7:,~,O) = 0 for n > 1. 

(13) 

The required solution for to has already been obtained by Carslaw and Jaeger [7] as 

[o = 1 + 2 fo  ~ exp(-u27:)  Jo(ur)Yo(u)- Yo(ur)lo(u) 
~ u rio(u) + Y~(u)  du,  (14) 

where Jv (z) and Yv(z )  are the Bessel functions of first and second kind, respectively. Numerical 

values of [o as a function o f t  for various values of time have been given by Jaeger [8]. 
It should be noted at this point that for 7: -~ oo (steady state) the asymptotic expression for 

the surface heat transfer forPe ~ 0 has already been given as [3] 

- (at/ar)~=j = A + ~pe ~ ( - 2  + A) + O(pe4) ,  (15) 

where 

a = [In (4IPe) - C] -I , (16) 

C = 0.5772156649... being Euler's constant. It is clear that the series solution (11) cannot 
approach this steady-state solution as 7: tends to infinity. This fact means that the equation 
(10) and the expansion (11) are valid only in the small-time region where 7: = O(1) (z = 
O(Pe)). The reason for the failure of the expansion (11) at large 7: can be explained as follows. 
In the small-time region, the thermal layer is restricted to the vicinity of the cylinder (inner 
region), where the effect of the convection term on the temperature is small, and therefore the 
expansion (11) is valid throughout the temperature field. As ~ becomes larger, however, the 
thermal layer expands into the outer region far from the cylinder, where, no matter how small 
Pe is, both the convection and the conduction terms are of the same order of magnitude. It is 
the existence of this outer region which prevents the expansion (11) from becoming a uniform- 
ly valid approximation to the function f. 

In order to obtain a uniformly valid solution, we shall employ the method of matched 
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asymptotic expansions. From the argument stated above, it is reasonable to construct two 

expansions valid in the large-time region, in addition to (11), an 'inner' and an 'outer' expansion 
respectively. Following a well-established procedure of the method, we construct the inner and 

the outer expansions in such a way that: (1) The inner expansion, which is valid in the inner 

region near the surface, satisfies the boundary condition on the surface; (2) The outer expan- 

sion, which is valid in the outer region far from the surface, satisfies the boundary condition at 

infinity, (3) The two expansions match identically in the overlapping domain in space where 

both expansions are valid and also match the small-time solution (11) at small values of r *, r * 

being a time variable in the large-time region. 
As the time variable in the large-time region, we introduce r * such as 

r* =Per =pe2Cr, (17) 

in terms of which the energy equation can be written as 

F 
PeUat*/ar * + Pe(u3t*/ar + - at*/ao) = ~= t*, 

r 
(18) 

where 

t*(r*,r,O ) = t(r,r,O ). (19) 

The equation (18) is valid only in the inner region and shows that in this region thermal 

diffusion predominates as in the small-time region. The form of the asymptotic expansion for 
t* may be determined from the asymptotic behaviour for ~ -+ oo of the small-time solution. 

From (11) and (14), the asymptotic behaviour of (M/ar)r= 1 for large value of ~ can be written 

as 

~_ 1 C C a - rr 2 / 6  -q 

- ( a ~ / a r ) r =  1 ~ 2 ln(4f) - 2C [ln(4~:) - 2C] 2 + [ln(4~:) - 2C] 3 + " ' "  J 
+ O(Pe). (20) 

From (20) and the requirement that the expansion for t* should match the small-time solution, 

the asymptotic behaviour of (3t*/ar)r= 1 for small r*  should be of the form 

- (3t*/Or)r= 1 ~ A + ~ A 2 (-In'r* + ln4 - C) + A 3 [¼ (In4 - ln1"*) 2 

_ C (ln4 - lnr*) + ¼ (6'2 - n2/6)] + . + O(Pe). 
2 "" 

In view of this, the solution of (18) may be expanded as 

(21) 

t* = t*(z*,r,O) + At*(r*,r,O) + A2t*(r*,r,O) + . . .  + O(Pe). (22) 

Substituting this into (18), we have, for all n, 
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~2 t* = O. (23) 

It is seen that the unsteady term disappears in (23). This means that the t*'s can be determined 
without imposing the matching condition (21) upon them. In constructing solutions, the 

matching condition between the large-time and the small-time solutions is imposed only in the 
outer field. It will be shown later that the inner solution obtained below automatically matches 
the small-time solution. 

Application of the Laplace transformations 

f0" = t*exp(-pr*)ar* and ~n = t*exp(-pr*)dr*, (24) 

in (22) and (23) yields 

- -  m _ _  

t = t o + At I + A2t * + A3t~ + . . .  + O(ee), 

and 

(25) 

and (27) 

m R 

The solutions of (26) satisfying the boundary condition on the surface, t* = lip and t* = 0 (n 
1) at r = 1, are 

t* = lip 

t* =anlnr f o r n > l ,  

where the an'S are integration constants to be determined from the matching condition between 

the inner and the outer solutions. 
We shall next consider the outer region. In this region, we introduce the following outer 

variables 

p =Per, T*(p,O;p)=T*(r,O;p), [T*(r*,p,0)= t*(r*,r,O)], (28) 

in terms of which the energy equation can be written as 

pT --~-  T*(0,p,O) - (1 - p-2Pe2)cos OaT-~/ap + (p-i _ p-3pe2 )sin oaT-~/Bo 

= V 2 T~, (29) 

where ~7~ is the same operator as ~Tr ~ but with r replaced by p. This equation reflects a proper 
balance between the convection and the conduction terms. The term T*(0, p, 0) can be 
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Heat transfer from a circular cylinder 183 

determined by applying the matching condition between T* and i. For any finite ~, the 
solution for io, (14), vanishes exponentially as r ~ oo, meaning that in the small-time region the 

temperature rise is negligible in the outer field. Hence, the matching condition requires that the 

following equation holds: 

T*(O,p,O) = 0. (30) 

The form of the expansion for T* may be determined from the following matching condition: 

lim T --~ = lim t*--, (31) 
p--~O r - - ,  o o  

as Pe -~ O. From (25) and (27), this matching condition may be written as 

T - ~ .  l ip  +al + [allnp +a2 - ( In4  - C)al]A + [a21np +aa - (ln4 - C)a2]A 2 

+ . . .  +O(Pe). (32) 

for small O. In view of this, we can assume that the solution of (29) may be expanded as 

T* = T*(o,O;p) + AT-~I (O,O;p) + A 2 T~---~,O;p) + A 3 T--~3 (o,O;P) 

+ . . .  +O(Pe). (33) 

Substitution of (33) into (29) gives the following equation for T*: 

P~n* - cos OaT*---[ap + (sin O/p )OT*---/O0 = ~7~2~-~Tn" (34) 

The solution of this equation satisfying the boundary condition at infinity can easily be ob- 
tained as 

T* = Anro(~ /1  + 4p p/2)exp(pla/2), (35) 

where the An's  are integration constants, K o (z) denotes the modified Bessel function and 

= - cos 0. (36) 

From (33) and (35), the asymptotic behaviour of T--g for small p can be written as 

~ - " -  (A0 +A 1A +A2A 2 +A3A a + . . .  ) ( - lnp + In4 - ln(1 + 4p)~- - C + O(p)) 

+ O(ee). (37) 

Comparison of (32) and (37) determines the unknown constants a n and An as follows: 
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A 0 = 0,  

An = ( l n ~ y -  ~/p, 1. 
for 

f 
n > 1. 

an _ (lnx/i--4~)n- 1 ip = 

(38) 

Thus, t* and T* are determined completely. By taking the inverse of tn* with the help of the 
tables in [9], we have 

t*  = I - Ahar - ½A2E, (r*/4)Inr - ¼ A 3 [-[_ rio I E, (r*v/4)E, (r*(l - v)14)dv 

(8fi'*) ~ ( ln  r*  C) exp ( - r* /4 )+E , ( r ' / 4 ) t l l n r+O(A4)+O(Pe) ,  _ -~--+ 

where 

(39) 

o. exp(- t )  dt. 
E,(x)  = fx  t (40) 

It is impossible to express T* in terms of tabulated functions. 
From (1 I) and (14), the wall temperature gradient may be obtained as 

4 fo** exp(-u2;r)du 
- ( a f / a r ) , =  ~ = --zr 2 u[J]o(u) + y~o(U) ] +O(Pe), (41) 

in the small-time re#on and, from (39), as 

V 
(at*lar)r=, = A + "A2E, (7"14) + ¼A 3 L for E, (r*v/4)E, (r*(l - v)14)dv 

(81r*) {(In(r*/4) + C)exp (- r*/4)'~ E, (r'14)} 1 + O(A4 ) + O(Pe), (42) 

in the large-time region. Numerical values of the integral in (41) have been tabulated by Jaeger 
and Clarke [10]. It is easy to verify that the asymptotic behaviour of (at*/ar)r = 1 for small r * 
calculated from (42) is in complete agreement with (21). Thus, the inner solution automatically 
matches the small-time solution. 

From (41) and (42), a single composite expansion for the local Nusselt number Nu = 
-(at/ar)r _- 1 which is uniformly valid for all values of time can be constructed by adding (41) 
and (42) and then subtracting the common part. The result is 

4 fo*° exp(-u2~) , 2 I  ( r * )  r* } N u  = -  ( a t l a r ) , = ,  = --zr 2 u{J2o(u) + yo2(U) } du +~A Et -~- +In -~- +C 
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E 1  l 
+A3 "4 fo E,(r*v/4)E,(r*(1-v)/4)dv 

7"* 
__ 7"__~ t ( l n _ ~ _  + 2  r* C)  exp ( - - ~ - ) + E ,  ( L ~ ) [  

1 In - In + + O(A 4) + O(Pe). 
- "4 2 4 4 - ~  

(43) 

For r ~ oo, the present expansion gives Nu --- 0.321, 0.263 and 0.185 for Pe = 0.1, 0.05 and 
0.01, respectively, and these values are about 1.32%, 0.42% and 0.00% above the exact values 
Nu = 0.3172, 0.2617 and 0.1847. The convergence of the expansion (43)is found to be better 
for smaller values of time and therefore we can expect that the error of the present results for 
r < oo is smaller than that for r ~ oo. In Fig. 1, the timewise variations of the Nusselt number 
calculated from (43) are shown graphically for Pe = 0.1,0.05 and 0.01. 

Finally, it should be noted that in the analysis presented above we have used, as the velocity 
field in the energy equation, only the leading term in (7), namely, uniform stream. Therefore 
the results obtained in this section can be applied not only to Darcy flow, but also to all the 
problems in which the so-called 'Oseen approximation' is valid in the energy equation. It is clear 
that the second term in (7) will influence the temperature field when the analysis is continued 
up to the term of O(Pe). 

4. Solution for large Peclet number 

We shall now proceed to obtain an asymptotic solution of (6) for large Peclet numbers. By 
introducing the following variable 

1.5 

1.0 

0.5 

Fig. 1. 

- -  sma l l  Pe sol., eq.(Z.3) 

- - -  - -  Eu ler ized s m a l l - t i m e  sol. 

. . . . .  s m a L l - t i m e  sol. ,  eq. (58)  

I Pe -0 01 
I0.I "E~CD 

I I I 
O0 5 10 15 18 

Timewise variation in the mean Nussclt numbcr for small Pcclet numbers. 
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Y = Pe~ (r - 1). 

we can write the energy equation (6) as 

at~or + ( - 2 Y  + 3 Y 2 P e  -~ + . . .  )cos Oat laY  

+ (2 - 2YPe-~  + . . .  ) (1 - YPe-~ + . . .  )sin oat /ao  

a 2 t / a Y 2  = + P e - r a t / a Y  + . . .  

In the limit Pe -~ oo, (45) becomes 

with 

a t la r  - 2Ycos o o t / a Y  + 2 sin Oatlao = a 2 t / a Y  2, 

(44) 

(45) 

(46) 

t = 1 at Y = O ,  

t-*O as Y~oo.  (47) 

The solution of this equation can be obtained by using a method similar to that used by 
Ruckenstein [ 11 ] and Chao [ 12] for analyzing transient heat/mass transfer from a translating 
droplet. The final result for the present problem is easily found to be 

(48) t = erfc(Ysin 0/X/~),  

where 

~ ' = - c o s 0  + I 1 7/1_- 1_.o,__0 ] <.9, 11 -+ cos cos 00 e x p ( - 4 Q  1 + 1 + cos 0 

From (48), the local Nusselt number can be expressed as 

Nu = (2Pe/rr~)~sin 0, (50) 

and the mean Nusselt number averaged over the surface as 

- -  l f o  4 V r  r Pe N u  = - NudO = - E(V'I - e x p ( - 4 r ) ) ,  (51) 
rr rr (1 - e x p ( - 4 r ) )  

where E ( k )  is the complete elliptic integral of the second kind. The local Nusselt number 
distributions around the cylinder calculated from (50) are shown graphically in Fig. 2 for 
various values of time. It is seen that the steady state is almost reached at r = 1. In Fig. 3, the 
timewise variation of the mean Nusselt number calculated from (51) is shown by a solid line. 
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1.5 

Z 

0.5 

0 
0 

2£ 

9.2 

I I I 
45 90 135 180 

0" 

Timewise variation in the mean Nusselt 
number for Pe ~ o~. 

1.5 

1.0 

exact sol., eq.(51) 

Eulerized small-time soL 
,eq.(58) 

~ . o o  

I l 
0 ' 5 0  - -  0.5 ' 1.0 

~E 

Fig. 3. Fig. 2. Local Nusselt number distributions 
around a cylinder for Pe ~ ~o. 

5. Solution for small times 

The fact that the heat transfer process when ¢ is small is dominated mainly by diffusion from 

the surface of  the cylinder suggests the introduction of  the following new variable 

I t 
rt = ~ (Pe l r )~ ( r  - 1) = ½ Yr-{. (52) 

Furthermore, we assume the solution of  (6) to be of  the form 

t = to(~,O) + "c{tl (7 ,0)  + r t : (n ,O) + r~t3(n,O) + . . .  (s3) 

Substituting (52) and (53) into (6) and expanding all terms for small ~-, we have the following 

set of  the equations for the tn'S: 

t? 

to + 2rlt'o = O, 

t'~ + 2~7t'1 - 2 t l  = 4 exp( - r?2) lOrPe)  ~, (54) 

t~ + 2rlt~ - 4 t :  = (4/V~) (2 cos 0 - 3]Pe)n  exp(-n 2) + (2/Pe)erfcn,  . . . ,  

where primes denote differentiation with respect to ,7, with boundary conditions 
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to = 1 at r/= 0, to + 0 as 7/~ 0% (55) 

t n = 0 at r/= 0, t n -~ 0 as 7/~ oo (for n >_ 1). 

These equations can be solved in a straightforward manner. The solutions are obtained for to, 

tl ..... /6, among which only to, tl and t2 are shown below: 

to = erfcrt, 
I 

tl = -Pe -  ~-r/erfcrt, 

t2 = Pe -1 [r?2erfcr/+ (1/2X/'~-)r/exp (-*/2)] - (2 cos 0/X/~)r/exp(-r/=),  

(56) 

From these solutions we can obtain the following expansion for the local Nusselt number: 

, (1  ) 
Nu/v"-ffe = Orr)-} + ~Pe r + (r/rr)} - TP-Te + cos 0 

(1 o o) 
, ~ ( 25 l l c o s 0  cos20 2 )  

+ ~-~- T~ _ + + 
96Pe 2 12Pe 2 

1 - ,  ( 13 5cosO ~ )  
+~Pe  ~r 2 + 3 c o s  2 0 - -  

16Pe 2 2Pe 

{r}  ( -  107.__.__~3 743 cos__.._ 0 19 cos20 21 + 7( 
1920Pe 3 + 480Pe 2 8 ~  + 5Pe \ 

cos30 2 cos 0 ) (57) 
+ 2 3 + ' ' "  

and, from this, the mean Nusselt number may be obtained as 

~-~/x/P~ = (~r)-~ +-~ee-~ ~- ' -~- - (r/Tr)~/4Pe + ~Pe 2 r 

:3( 5) (,, 11) 
+ ~f 2,1-~ _ ~ + + P e - ~ T  2 

96Pe 2 ~ 64Pe 2 16 

t s ( 1073 241 ) (58) 
+/r ~T ~- + + 

1920Pe 3 ~ • . .  

These expansions are valid for all values of Pe, but only for small r.  It is possible, however, to 
improve their convergence by recasting them in powers of the new parameter defined by (Euler 

transformation) 
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1.8 

1.5 

1.0 

0.5 

Fig. 4. 

\ 
\ 
,, Z--oo (exact sol. [3]) 
\ \  

\ \  

?e=0, 
o.2___A_s 

o~eq.(51) #e>]uu 

[ I I I I 
2 4 6 8 10 

"17 

Timewise variation in the mean Nusselt number calculated from the Eulerized small-time solution. 

e = r~/(1 + r~) ,  (59) 

or, when Pe is very large, by 

e = r2/ (1  + z2).  (60) 

The mean Nusselt number calculated from (58) and that from the Eulerized series are shown 

for Pe = 0.01 and ~ in Figs. 1 and 3, respectively. It is seen that a remarkable improvement can 

be achieved by the Eulerized series and it appears that the Eulerized series predicts sufficiently 

reliable values of the mean Nusselt number for most values of  time. In Fig. 4 we show the 

mean Nusselt number results calculated from the Eulerized series for 0.1 < Pe < ~ .  It is seen 

that  as Pe decreases a larger value of r is required to approach its steady-state value. The 

difference in the value of  N - ' u / v ~  between Pe = 200 and ~ is within about 3%, so that for 

practical purposes we can use the solution for Pe = ~ to calculate the mean Nusselt number for 

Pe >~ 200. 
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